Recent Developments in Sheet Steels from a Forging Perspective and Outlook

C J Van Tyne

Advanced Steel Processing and Products Research Center
Colorado School of Mines
Golden, CO USA

Forging Technical Conference
September 12, 2018
Long Beach, CA
Concentrating on research at the interface between producers and users of steel.
ASPPRC Sponsors

<table>
<thead>
<tr>
<th>AK Steel</th>
<th>Gerdau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algoma</td>
<td>Gestamp</td>
</tr>
<tr>
<td>AMG Vanadium</td>
<td>Kobe Steel</td>
</tr>
<tr>
<td>ArcelorMittal</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>Baoshan Iron and Steel</td>
<td>Nexteer Automotive</td>
</tr>
<tr>
<td>Bekaert</td>
<td>Nucor Steel</td>
</tr>
<tr>
<td>Blount International</td>
<td>POSCO</td>
</tr>
<tr>
<td>Caterpillar Incorporated</td>
<td>Precision Castparts Corp</td>
</tr>
<tr>
<td>CBMM North America</td>
<td>Saudi Basic Industries</td>
</tr>
<tr>
<td>Chevron Energy</td>
<td>SSAB Americas</td>
</tr>
<tr>
<td>Climax Molybdenum</td>
<td>Tata Steel Europe</td>
</tr>
<tr>
<td>Deere and Company</td>
<td>Ternium Mexico</td>
</tr>
<tr>
<td>Essar Steel Algoma</td>
<td>Timken Steel</td>
</tr>
<tr>
<td>Evraz Inc. NA</td>
<td>Thyssenkrupp Steel</td>
</tr>
<tr>
<td>FCA US LLC</td>
<td>United States Steel Division, of USX</td>
</tr>
<tr>
<td>General Motors Corporation</td>
<td>voestalpine Stahl GmbH</td>
</tr>
</tbody>
</table>
Background and Objectives

• Major developments in sheet steels over last decade.

• Possible opportunities for forging companies

• Objectives:
 1) Justify why forgers should be aware of sheet steel metallurgy.
 2) Describe some of the recent developments.
 3) Speculate about possible opportunities in the coming years.
A Bit of History

• Microalloyed forging steels
 • Major opportunity of forging companies
 • Low total cost manufacturing
 • Good for certain markets

• Where were microalloyed steels first developed and used in a major way?
Microalloyed Steels

• A major large scale use was in steel plate in early 1970s although patents in 1939-41.
• Produced by Japan for use in the 800 mile Alaskan pipeline.
• Pipe made by the UOE process using a large hydraulic press.

Gray MJ and Siciliano F. *High Strength Microalloyed Linepipe*. Microalloyed Steel Institute; 2009.
Implications

• Steel metallurgy continues to evolve to meet the needs of society.
• There is significant time from initial idea/patent to large scale use.
• Forging steels may develop from research done on other steel products.
Drivers of Recent Developments in Sheet Steels

- Automotive industry uses large quantities of steel.
- Vehicles need to become lighter and stronger.
 - Lighter to increase fuel economy and to reduce emissions.
 - Stronger to improve passenger safety.
- Steel Companies are developing sheet steels with high strength and higher toughness.
 - Higher strength means less steel and lighter vehicle
 - Higher strength often means less toughness
Automotive Sheet Steels

- First Generation
Automotive Sheet Steels

- Second Generation

Automotive Sheet Steels

• Third Generation (Gen3) Steels

Fundamental Requirement of Gen3 Steel
DP Steels

- DP (Dual Phase) steels are a mixture of ferrite and martensite. First generation.
- Strength from martensite
- TE from ferrite
Steels with Retained Austenite

- TRIP (Transformation Induced Plasticity) Steels
 - High end of First Generation Steels
 - When deformed (in use) austenite transforms to martensite increasing plastic behavior thus increasing toughness

Quench and Partitioned (Q&P) Steels

- Q&P steels concept developed by ASPPRC.
- Processing to increase retained austenite.
- Reported: 1500 MPa, 17% TE

• TBF (TRIP aided Bainitic Ferrite) Steels
• Interrupted Austempering process
• Prior forging enhances properties
• Reported:
 • 1000 MPa
 • 30% TE

Q&P and TBF steels
• Laboratory steels (not production).
• Research work to date has focused on sheet steels with lower C content than most forging steels.
• TE is not toughness, but a rough indication.

• Production runs of:
 • QP980 980 MPa 20% TE
 • QP1180 1180 MPa 14% TE
Forging Outlook

• These sheet steel compositions not yet ready for many forging applications.

• The idea of having retained austenite to increase strength and improve toughness is key.
Forging Outlook

• To get retained austenite need careful control of post forging heat treatment.

• Can be done in heat treat shop after forging, but there would be added expense.

• Like microalloyed forging steels, control of time and temperature directly off the press should be considered.
Challenges

- Development of appropriate steel chemistries.
- Post forging time temperature control
 - Continuous heat treatment conveyors?
 - Forgings are thicker than sheet. Heat extraction?
 - Precise timing needed.
 - Effective quenching needed.

- Many research and technical details to be resolved before actual implementation.
Conclusions

• Many new sheet steel (concepts) developed to increase strength and TE (toughness)
 • DP, TRIP, Q&P, TBF

• Not yet ready for forging applications
• These concepts (production schemes) may be coming to the forging industry.
• Will require precise time and temperature control post forging.
Thank You